

SLC(University of Delhi) Shyam Lal College

Programme Specific Outcomes and Course Outcomes

B.Sc.(H) Mathematics

Programme Specific Outcomes:

Programme	Programme Specific Outcomes	
B.Sc.(H) Mathematics	PSO-1: Students will be enabled to communicate mathematics effectively by written, computational and graphic means.	
	PSO-2: Students will be enabled to create mathematical ideas from basic axioms.	
	PSO-3: Students will be enabled to gauge the hypothesis, theories, techniques and proofs provisionally.	
	PSO-4: Students will learn to utilize mathematics to solve theoretical and applied problems by critical understanding, analysis and synthesis.	
	PSO-5: Students will identify applications of mathematics in other disciplines and in the real-world, leading to enhancement of career prospects in a plethora of fields and research.	
	PSO-6: Course will empower the students with the skills and together with the liberty of exploring their interests within the main subject.	
	PSO-7: Students will be capable to use ICT tools in solving problems or gaining knowledge and to use appropriate softwares and programming skills to solve problems in mathematics.	
	PSO-8: Students will acquire knowledge and skills through self-learning that helps in personal development and skill development for changing demands of work place.	
	PSO-9: Students develop the ability to think critically, logically and analytically and hence use mathematical reasoning in everyday life.	
	PSO-10: Students will be equipped with knowledge of basic concepts and ideas in mathematics and its subfields and will be able to apply the applications of the subject to other disciplines.	
	PSO-11: It would also help in making responsible citizens and facilitate character building.	

Course Outcomes: Semester 1:

Course Name	Learning Outcomes	Programme Specefic Outcomes
		are Attained by
BMATH101: Calculus	CO1: Learn first and second derivative tests for relative extrema and apply the knowledge in problems in business, economics and life sciences. CO2: Sketch curves in a plane using its mathematical properties in the different coordinate systems of reference. CO3: Compute area of surfaces of revolution and the volume of solids by integrating over cross- sectional areas. CO4: Understand the calculus of vector functions and its use to develop the basic principles of planetary motion.	 Students get to know basics of calculus and geometric properties of different conic sections Understand the applications of the topic in planetary motion, design of telescope and real world. Computer practicals help students to have deep conceptual knowledge of the topic

BMATH 102: Algebra	 CO 1: Employ De Moivre's theorem in a number of applications to solve numerical problems. CO 2: Learn about equivalent classes and cardinality of a set. CO 3: Use modular arithmetic and basic properties of congruences. CO 4: Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix. CO 5: Find eigenvalues and corresponding eigenvectors for a square matrix. 	 Students are made able to connect the concepts of equation theory, complex numbers, number theory and matrices to real-world problem. They were able to perform matrix algebra with applications to computer graphics.
GE 1: Calculus	a square matrix. CO 1: sketching of cartesian curves CO 2: Learning to find volumes and surface area of three-dimensional figures CO3: understand limits, continuity and derivatives of several variables and vector valued functions	 Applications of derivatives is known to students Students got to know various notions related to vector-valued functions and functions of several variables
GE 1: Analytic geometry and theory of equations	CO 1: Learn about conic section and their sketching. CO 2: understand the properties of roots of polynomial equations	 Students get the knowledge of conic section and are made able to sketch them. Concept of equation theory is introduced.

Semester 2:

Course Name	Learning Outcomes	Programme Specific
BMATH 203: Real Analysis BMATH 204:	 CO 1: Understand many properties of the real line ℝ, including completeness and Archimedean properties. CO 2: Learn to define sequences in terms of functions from N to a subset of ℝ. CO3: Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit of a bounded sequence. CO4: Apply the ratio, root, alternating series and limit comparison tests for convergence and absolute convergence of an infinite series of real numbers. CO1: Learn basics of differential converting and monotonic sequence. 	 Students get a deep understanding of real line R Students will be able to discuss convergence and divergence of sequences and series of real numbers. The students get
Differential Equations	equations and mathematical modeling. CO2: Formulate differential equations for various mathematical models. Solve first order non-linear differential equations and linear differential equations of higher order using various techniques. CO3: Apply these techniques to solve and analyze various mathematical models.	 introduced to differential equations. They learn to create a model to a problem Learned the applications of differential equations in real world.
GE 2: Linear Algebra	 CO3: Learn about vectors and vector spaces. CO3: Concept of basis and dimension of vector space will be clear. CO3: Study of linear transformation is done 	 Students learn about linear algebra and its application. Concept of linear transformation helps them to construct matrices.
GE 2: Discrete mathematics	 CO1: Basic principles of logic, set theory, Boolean algebra is introduced CO2: Understand the ideas of mathematical induction and basic counting techniques 	• Students construct logical arguments and rigorous proofs

Semester 3:

Course Name	Learning Outcomes	Programme Specific
		Outcomes are Attained by
BMATH 305: Theory of Real Functions	 CO1: Have a rigorous understanding of the concept of limit of a function. CO2: Learn about continuity and uniform continuity of functions defined on intervals. CO3: Understand geometrical properties of continuous functions on closed and bounded intervals. CO4: Learn extensively about the concept of differentiability using limits, leading to a better understanding for applications. CO5: Know about applications of mean value theorems and Taylor's theorem. 	 Students are equipped with a matured perspective of the concepts of calculus Students learn more applications of limits, continuity, differentiability.
BMATH 306: Group Theory-I	 CO1: Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups, etc. CO2: Link the fundamental concepts of groups and symmetrical figures. Analyze the subgroups of cyclic groups and classify subgroups of cyclic groups. CO3: Explain the significance of the notion of cosets, normal subgroups and factor groups. CO4: Learn about Lagrange's theorem and Fermat's Little theorem. CO5: Know about group homomorphisms and group isomorphisms. 	 Students learn about the fundamental theorem of groups and homomorphism Students get to know about symmetric groups and symmetries, an important concept in group theory. Consequences of Lagrange's theorem are learned by them and their applications.

BMATH 307:	CO1: Learn the conceptual	• Students were made
Multivariate Calculus	variations when advancing in calculus from one variable to multivariable discussion. CO2: Understand the maximization and minimization of multivariable functions subject to the given constraints on variables. CO3: Learn about inter- relationship amongst the line integral, double and triple integral formulations. CO4: Familiarize with Green's, Stokes' and Gauss divergence theorems.	aware of applications of multivariate calculus tools in physics, economics, optimization and understanding the architecture of curves and surfaces in plane and space.
SEC 1: LaTeX and HTML	CO1: Create and typeset a LaTeX document. CO2: Typeset a mathematical document using LaTex. CO3: Learn about pictures and graphics in LaTex. CO4: Create beamer presentations. CO5: Create web page using HTML	 Students were able to typeset mathematical equations They were equipped with skill of making presentations involving long mathematical equations, a number of symbols. They learned to design their own webpage
GE 3: Differential equation	 CO1: Solve the exact, linear and Bernoulli equations and find orthogonal trajectories. CO2: Apply the method of variation of parameters to solve linear differential equations. CO3: Formulate and solve various types of first and second order partial differential equations. 	 The students get introduced to differential equations. Different methods were discussed to solve differential equations.
GE 3:Linear programming and game theory	 CO1: Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints. CO2: Write the dual of a linear programming problem. CO3: Solve the transportation and assignment problems. CO4: Learn about the solution of rectangular games using graphical method and using the solution of a pair of associated prima-dual linear programming problems. 	 Students are able to construct a linear programming problem for a given situation. Simplex method helps them to get the optimal value of the problem Transportation problem and assignment problems are learned by them and they are able to apply them to day-to-day life Students learn to solve two-person-zero-sum game using different methods.

Semester 4:

Course Name	Learning Outcomes	Programme Specefic
		Outcomes are Attained by
BMATH 408: Partial	CO1: Formulate, classify and	• Students learn to solve
Differential Equations	transform first order PDE's into	partial differential
	canonical form.	equations and use of
	CO2: Learn about method of	them in physical
	characteristics and separation of	problems
	variables to solve first order PDE's.	
	CO3: Classify and solve second	
	order linear PDE's.	
	CO4: Learn about Cauchy problem	
	for second order PDE and	
	homogeneous and nonhomogeneous	
	wave equations.	
	CO5 : Apply the method of separation	
	of variables for solving many well-	
	known second order PDE's.	
BMATH 409: Riemann	CO1: Learn about some of the	• Students learn the
Integration & Series of	classes and properties of Riemann	integrability of
Functions	integrable functions, and the	continuous functions on
	applications of the Fundamental	closed and bounded
	theorems of integration.	intervals
	CO2: Know about improper integrals	• Applications of
	including, beta and gamma functions.	integrable functions
	CO3: Learn about Cauchy criterion	also learned
	for uniform convergence and	
	Weierstrass M-test for uniform	
	convergence.	
	CO4: Know about the constraints for	
	the inter-changeability of	
	differentiability and integrability with	
	infinite sum.	
	CO5: Approximate transcendental	
	functions in terms of power series as	
	well as, differentiation and	
	integration of power series.	

BMATH 410: Ring Theory & Linear Algebra-I	 CO1: Learn about the fundamental concept of rings, integral domains and fields. CO2: Know about ring homomorphisms and isomorphisms theorems of rings. CO3: Learn about the concept of linear independence of vectors over a field, and the dimension of a vector space. CO4: Basic concepts of linear transformations, dimension theorem, matrix representation of a linear transformation, and the change of coordinate matrix. 	 Students get the knowledge of two important algebraic structures: ring theory and linear algebra Students are able to apply linear algebra in real life.
Algebra Systems and Related Software	 cor: Use of computer algebra systems (Mathematica/MATLAB/Maxima/M aple etc.) as a calculator, for plotting functions and animations. co2: Use of CAS for various applications of matrices such as solving system of equations and finding eigenvalues and eigenvectors. co3: Understand the use of the statistical software R as calculator and learn to read and get data into R. co4: Learn the use of R in summary calculation, pictorial representation of data and exploring relationship between data. co5: Analyze, test, and interpret technical arguments on the basis of 	• Students are able to use different computer algebra systems and are able to solve mathematical problems using them.
GE4: Numerical methods	geometry.CO1: Find the consequences of finiteprecision and the inherent limits ofnumerical methods.CO2:Appropriatemethodsto solve algebraic andtranscendental equations.	• Important topics of numerical methods are understood by students

	CO3: Solve first order initial value problems of ODE's numerically	
	using Euler methods.	
GE 4: Elements of analysis	 CO1: Understand the real numbers and their basic properties. CO2: Be familiar with convergent and Cauchy sequences. Test the convergence and divergence of infinite series of real numbers. CO3: Learn about power series expansion of some elementary functions. 	 Students get an insight of real number system. They learned real sequences and series and their sums.

Semester 5:

Course Name	Learning Outcomes	Programme Specefic
		Outcomes are Attained by
BMATH 511: Metric	CO1: Understand the basic concepts	• Students develop an idea of
Spaces	of metric spaces	distance into an abstract form
	CO2: Correlate these concepts to their	on any sets of objects,
	counter parts in real analysis	maintaining its inherent
	CO3: Appreciate the abstractness of	characteristics and the
	the concepts such as open balls, closed	resulting consequences
	balls, compactness, connectedness etc.	
	beyond their geometrical imaginations.	
	CO4: Analyze how a theory advances	
	from a particular frame to a general	
	frame	
	CO5: Learn about Banach fixed point	
	theorem-one of the beautiful results in	
	analysis	
BMATH 512: Group	CO1 : Automorphisms for constructing	• Students get in-depth
Theory	new groups from the given group	understanding of abstract
	CO2: External direct product $Z_2 \oplus Z_2$	algebra.
	applies to data security and electric	• Students able to classify all
	circuits.	finite Abelian groups.
	CO3: Group actions, Sylow theorems	
	and their applications to check non	
	simplicity.	
	CO4: Understand fundamental	
	theorem of finite abelian groups	
	CO5: Be familiar with group actions	
	and conjugacy in S _n .	
DSE-1 (i): Numerical	CO1: Some numerical methods to find	• Students get the
Analysis	the zeroes of nonlinear functions of a	knowledge computational
	single variable and solution of a	techniques to find
	system of linear equations, up to a	approximate value for
	certain given level of precision.	possible root(s) of non-
	CO2: Interpolation techniques to	algebraic equations, to find
	compute the values for a tabulated	the approximate solutions
	function at points not in the table.	of system of linear

	CO3: Applications of numerical differentiation and integration to convert differential equations into difference equations for numerical solutions.	 equations and ordinary differential equations Students are able to apply linear algebra in real life. Learn the use of Computer Algebra System (CAS) by which the numerical problems can be solved
		both numerically and analytically, and to enhance the problem solving skills.
DSE-2 (i): Probability	CO1: Distributions to study the joint	• Students get familiar with
Theory and Statistics	behavior of two random variables	the basic statistical
	CO2: To establish a formulation	concepts and tools which
	helping to predict one variable in terms	are needed to study
	of the other, i.e., correlation and linear	situations involving
	regression.	uncertainty or randomness.
	CO3: Central limit theorem, which	• students solve several
	helps to understand the remarkable fact	examples and exercises that
	that: the empirical frequencies of so	blend their everyday
	many natural populations, exhibit a	experiences with their
	bell shaped curve.	scientific interests.

Semester 6:

Course Name	Learning Outcomes	Programme Specefic
		Outcomes are Attained by
BMATH 613: Complex	CO1: Learn the significance of	• Students develop a basic
Analysis	differentiability of complex functions	idea of analysis of complex
	CO2: Understand Cauchy Riemann	functions in complex
	equations.	variables.
	CO3: Learn some elementary	
	functions and valuate the contour	
	integral	
	CO4: Understand the role of Cauchy-	
	Goursat theorem and the Cauchy	
	integral formula	
	CO5 : Expand some simple functions	
BMATH 614: Ring	CO1: Appreciate the significance of	• Students learn the basic
theory and linear	unique factorization in rings and	concepts of ring of
algebra -II	integral domains	polynomials and irreducibility
	CO2: Compute the characteristic	tests for polynomials over ring
	polynomials, eigenvectors,	of integers, used in finite fields
	eigenspaces.	with applications in
	CO3: Compute inner products and	Cryptography.
	determine orthogonality on vector	• Students get to know the
	spaces	application of techniques
	CO4: Find the adjoint, normal and	using the adjoint of a linear
	orthogonal operators	operator and their properties to
		least squares approximation
		and minimal solutions to
		systems of linear equations.
DSE-3 (iii):	CO1: Learn the development,	• Students do scientific study of
Biomathematics	analysis and interpretation of bio	normal functions in living
	mathematical models.	systems.
	CO2: Reinforce the skills in	• The basic concepts of the
	mathematical modeling.	probability to understand
	CO3: Appreciate the theory of	molecular evolution and
	bifurcation and chaos.	genetics have also been
	CO4: Learn to apply the basic	discussed.
	concepts of probability to molecular	

	evolution and genetics.	
DSE-4 (ii): Linear	CO1: Analyze and solve linear	• Students understand the ideas
Programming and	programming models of real-life	underlying the Simplex
Applications	situations.	Method for Linear
	CO2: The graphical solution of LPP	Programming Problem, as an
	with only two variables, and illustrate	important branch of
	the concept of convex set and	Operations Research.
	extreme points. The theory of the	• Students understand Linear
	simplex method is developed	Programming with applications
	CO3: The relationships between the	to Transportation, Assignment
	primal and dual problems and their	and Game Problem. Such
	solutions with applications to	problems arise in manufacturing
	transportation, assignment and two-	resource planning and financial
	person zero-sum game problem.	sectors.

SLC(University of Delhi) Shyam Lal College

Programme Specific Outcomes and Course Outcomes

B.Sc.(Physical Sciences)

Programme Specific Outcomes:

Programme	Programme Specific	
B.Sc.(Phy Sc)	PSO-1: Students will be able to solve problems using a broad range of significant mathematical techniques, including calculus, algebra, geometry, analysis, numerical methods, differential equations, probability and statistics along with hands-on learning through CAS, LaTeX.	
	PSO-2: Combine the principles of physics and chemistry, as supported by mathematics to describe the foundational concepts of the physical world and apply these concepts to new situations.	
	PSO-3: Apply the techniques of mathematics to understand experimental observations and predict outcomes.	
	PSO-4: Collaborate with others, including multidisciplinary groups, to solve scientific problems, and to recognize ethical issues in each respective profession.	
	PSO-5: Students will be enabled to communicate mathematics effectively by written, computational and graphic means.	
	PSO-6: Students will be enabled to create mathematical ideas from basic axioms.	
	PSO-7: Students will learn to utilize mathematics to solve theoretical and applied problems by critical understanding, analysis and synthesis.	
	PSO-8: Students will identify applications of mathematics in other disciplines and in the real-world, leading to enhancement of career prospects in a plethora of fields and research.	
	PSO-9: Course will empower the students with the skills and together with the liberty of exploring their interests within the main subject.	
	PSO-10: Students will be capable to use ICT tools in solving problems or gaining knowledge and to use appropriate softwares and programming skills to solve problems in mathematics.	
	PSO-11: Students will acquire knowledge and skills through self-learning that helps in personal development and skill development for changing demands of work place.	
	PSO-12: Students develop the ability to think critically, logically and analytically and hence use mathematical reasoning in everyday life.	
	PSO-13: Students will be equipped with knowledge of basic concepts and ideas in mathematics and its subfields and will be able to apply the applications of the subject to other disciplines.	

PSO-14: It would also help in making responsible citizens and facilitate character building.

Course Outcomes:

Semester 1:

Course Name	Learning Outcomes	Programme Specefic Outcomes are
		Attained by
Paper1: Calculus and matrices	 CO1: Define vector spaces, linear transformations and their matrix characterization. CO2: Solve systems of linear equations and find eigenvalues and corresponding eigenvectors for a square matrix. CO3: Computation of matrix inverses using elementary row operations. CO4: Define and use fundamental concepts of calculus including sequences. CO5: Perform operations with various forms of complex numbers to solve equations. 	 Students get to know basics of calculus and matrices. Students are able to relate linear transformation and matrices. An introduction to the concept of complex numbers is given to students. Students will be able to discuss convergence and divergence of sequences and series of real numbers

GE 1: Calculus	CO 1: Introduction of concept of limits, derivatives of functions. Finding volumes of surface of revolution by different methods. CO 2: Learning about vector valued functions and curvature	 The students learn basic concepts of limits and differentiability of functions The students are made aware of surface of revolution and volume of those surfaces. Notion of vector valued functions is introduced to students and students get the knowledge of curvature of the functions.
GE 1: Analytic geometry and theory of equations	 CO 1: Learn about conic section and their sketching. CO 2: Theory of equations and polynomials will be understood. 	 Students get the knowledge of conic section and are made able to sketch them. Concept of equation theory is introduced.

Semester 2:

Course Name	Learning Outcomes	Programme Specific
		Outcomes are Attained by
Paper 2: Calculus and Geometry	 CO 1: Define and use fundamental concepts of calculus including limits, continuity, differentiability and uniform continuity. CO2: Sketch curves in a plane using its mathematical properties in the different coordinate systems of reference. CO3: Use integration to find length, area and volume of surface of revolution. 	 Students got familiarized with fundamental concepts of calculus. Students are well-versed with conics and quadric surfaces so that they should able to relate the shape of real-life objects with the curves/conics.
GE2: Linear Algebra	 CO 1: Learn about vectors and vector spaces. CO 2: Concept of basis and dimension of vector space will be clear. CO 3: Study of linear transformation is done 	• Students learn about vector spaces and their real life applications
GE2: Discrete mathematics	CO1: Basic principles of logic, set theory, Boolean algebra is introduced CO2: Understand the ideas of mathematical induction and basic counting techniques	 Students construct logical arguments and rigorous proofs

Semester 3:

Course Name	Learning Outcomes	Programme Specific
		Outcomes are Attained by
Paper 3: Abstract Algebra	 CO1: Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups etc. CO2: Explain the significance of the notion of cosets, normal subgroups, and factor groups. CO3: Understand the fundamental concepts of rings, fields and integral domains. CO4: Know about vector spaces over a field, and linear transformations. 	 Students learn about the fundamentals of algebraic structures. Learn the applications of vector spaces into real life problems
SEC 2: Computer Algebra System and Related softwares	CO1: Use of computer algebra systems (Mathematica/MATLAB/Maxima/ Maple etc.) as a calculator, for plotting functions and animations. CO2: Use of CAS for various applications of matrices such as solving system of equations and finding eigenvalues and eigenvectors. CO3: Understand the use of the statistical software R as calculator and learn to read and get data into R. CO4: Learn the use of R in summary calculation, pictorial representation of data and exploring relationship between data. CO5: Analyze, test, and interpret technical arguments on the basis of geometry	• Students are able to use different computer algebra systems and are able to solve mathematical problems using them.

GE 3: Differential equation	 CO1: Solve the exact, linear and Bernoulli equations and find orthogonal trajectories. CO2: Apply the method of variation of parameters to solve linear differential equations. CO3: Formulate and solve various types of first and second order partial differential equations. 	 The students get introduced to differential equations. Different methods were discussed to solve differential equations.
GE 3: Linear programming and game theory	 CO1: Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints. CO2: Write the dual of a linear programming problem. CO3: Solve the transportation and assignment problems. CO4: Learn about the solution of rectangular games using graphical method and using the solution of a pair of associated prima-dual linear programming problems. 	 Students are able to construct a linear programming problem for a given situation. Simplex method helps them to get the optimal value of the problem Transportation problem and assignment problems are learned by them and they are able to apply them to day-to-day life. Students learn to solve two-person-zero-sum game using different methods.

Semester 4:

Course Name	Learning Outcomes	Programme Specefic
		Outcomes are Attained by
Paper 4: Real Analysis SEC 1: Mathematical Typesetting: LaTeX	CO1: Be familiar with the concept of countable and uncountable set, cluster points, Bolzano Weierstrass' theorem. CO2: Recognize convergent, divergent, bounded, Cauchy and monotone sequences. CO3: Test the convergence and divergence of series using ratio test, root test and Leibnitz test. CO4: Understand the concepts of pointwise and uniform convergence. CO5: Understand Riemann integrability of continuous and monotone functions. CO1: Create and typeset a LaTeX document. CO2: Typeset a mathematical document using LaTex. CO3: Learn about pictures and graphics in LaTex.	 Students get a deep understanding of real line R Students will be able to discuss convergence and divergence of sequences and series of real numbers. Applications of integrable functions also learned Students were able to typeset mathematical equations They were equipped with skill of making presentations involving
	CO4: Create beamer presentations.	long mathematical equations, a number of symbols.
GE4: Numerical methods	 CO1: Find the consequences of finite precision and the inherent limits of numerical methods. CO2: Appropriate numerical methods to solve algebraic and transcendental equations. CO3: Solve first order initial value problems of ODE's numerically using Euler methods. 	• Important topics of numerical methods are understood by students
GE 4: Elements of analysis	CO1: Understand the real numbers and their basic properties.CO2: Be familiar with convergent and Cauchy sequences. Test the convergence and divergence of	 Students get an insight of real number system. They learned real sequences and series and their sums.

expansion of some elementary functions.
--

Semester 5:

Course Name	Learning Outcomes	Programme Specefic
		Outcomes are Attained by
DSE 1: Mechanics and Discrete Mathematics	 CO1: Learn about friction, centre of gravity, work and potential energy in statics. CO2: Know about various topics in dynamics such as simple harmonic motion, simple pendulum and projectile motion. CO3: Know about various types of graphs such as complete and bipartite graphs. CO4: Understand graphs, their types and its applications in study of the total work of the state of the state. 	 The students get introduced to differential equations. Different methods were discussed to solve differential equations. Students get insight of partial differential equations and their applications in real world
SEC 3: Transportation and network flow	CO1: Transportation, Assignment and Traveling salesperson problems. CO2: Network models and various network flow problems.	 Students learn the applications of linear programming to solve real-life problems such as transportation problem, assignment problem, shortest- path problem, minimum spanning tree problem, maximum flow problem and minimum cost flow problem.

Semester 6:

Course Name	Learning Outcomes	Programme Specefic
		Outcomes are Attained by
DSE2 : Probability and	CO1: This course will enable the	• Students are equipped
Statistics	students to learn: Basic probability	with the concepts of
	axioms and familiar with discrete and	probability and statistics
	continuous random variables.	
	CO2: To measure the scale of	
	association between two variables,	
	and to establish a formulation helping	
	to predict one variable in terms of the	
	other, i.e., correlation and linear	
	regression.	
	CO3: Central limit theorem, which	
	helps to understand the remarkable	
	fact that: the empirical frequencies of	
	so many natural populations, exhibit	
	a bell-shaped curve. fact that: the	
	empirical frequencies of so many	
	natural populations, exhibit a bell-	
	shaped curve.	
SEC4: Statistical	CO1: This course will enable the	• Students learn the
Software: R	students to: Use R as a calculator;	statistical software R
	CO2: Read and import data in R.	and its use in real life
	Explore and describe data in R and	
	plot various graphs in R.	